Hausdorff compactifications in ZF

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Countable Compact Hausdorff Spaces Need Not Be Metrizable in Zf

We show that the existence of a countable, first countable, zerodimensional, compact Hausdorff space which is not second countable, hence not metrizable, is consistent with ZF. 1. Notation and terminology Definition 1.1. Let (X,T ) be a topological space and B a base for T . (i) X is said to be compact if every open cover U of X has a finite subcover V . X is said to be compact with respect to ...

متن کامل

End compactifications and general compactifications

We use the insights of Robinson’s nonstandard analysis as a powerful tool to extend and simplify the construction of compactifications of regular spaces. In particular, we deal with the Stone-Čech compactification and compactifications formed from topological ends. For the nonstandard extension of a metric space, the monad of a standard point x is the set of all points infinitesimally close to ...

متن کامل

The Ultrafilter Closure in ZF

It is well known that, in a topological space, the open sets can be characterized using filter convergence. In ZF (Zermelo-Fraenkel set theory without the Axiom of Choice), we cannot replace filters by ultrafilters. It is proven that the ultrafilter convergence determines the open sets for every topological space if and only if the Ultrafilter Theorem holds. More, we can also prove that the Ult...

متن کامل

Formalising Ruby in Isabelle ZF

This paper describes a formalisation of the relation based language Ruby in Zermelo Fraenkel set theory ZF using the Isabelle theorem prover We show how a very small subset of Ruby called Pure Ruby easily can be formalised as a conservative extension of ZF and how many useful structures used in connection with VLSI design can be de ned from Pure Ruby The inductive package of Isabelle is used to...

متن کامل

About remainders in compactifications of paratopological groups

In this paper‎, ‎we prove a dichotomy theorem for remainders in‎ ‎compactifications of paratopological groups‎: ‎every remainder of a ‎paratopological group $G$ is either Lindel"{o}f and meager or‎ ‎Baire‎. Furthermore, ‎we give a negative answer to a question posed in [D‎. ‎Basile and A‎. ‎Bella‎, ‎About remainders in compactifications of homogeneous spaces‎, ‎Comment‎. ‎Math‎. ‎Univ‎. ‎Caroli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2019

ISSN: 0166-8641

DOI: 10.1016/j.topol.2019.02.046